

Reformate Desulfurization for Logistic SOFC Power Systems

Hongyun Yang¹, Troy Barron¹ and Bruce Tatarchuk²

- 1. IntraMicron Inc., 368 Industry Drive, Auburn, AL, 36832
 - 2. Dept. of Chem. Eng., Auburn University, AL, 36849

June 16, 2010

the 44th Power Sources Conference Las Vegas, NV

IntraMicron Inc.

IntraMicron Inc is a small business company located at Auburn, AL. Its R&D covers:(1) Filtration; (2) Desulfurization; (3) Fischer Tropsch Synthesis; (4) CO oxidation.

Microfibrous Entrapped Catalyst Particles

Polishing sorbents for gas phase desulfurization

Adsorbent for liquid phase desulfurization

COLLEGE OF ENGINEERING

Desulfurization Sorbents/Adsorbents

INTRAMICRON

Low Temperature Gas Phase Desulfurization Sorbent: Cu-ZnO/SiO₂, (Patent Applied for)

Liquid Phase Desulfurization Adsorbents: Ag₂O/TiO₂ for JP-5

Outline

- Sulfur Issue
- Reactor Design and Bed Configuration
- Desulfurization & Regeneration Performance
- Desulfurizer Construction
- Conclusion
- Acknowledgements

Sulfur Issue

- Typical Fuel Cells Have Low Sulfur Threshold:
 - 0.1 ppmv most for PEM Fuel Cells
 - 2~3 ppmv for typical Solid Oxide Fuel Cells
- Sulfur Content in Logistic Fuels (ca. JP-5, JP-8)
 - i.e. 500~3000ppmw, equivalent to 50~300 ppmv after converted to reformates in reformers.
- Sulfur Removal Techniques
 - Pre Reformer Desulfurization
 - Post Reformer Desulfurization
- Post Reformer Desulfurization Using Reactive Sorbents
 - ZnO, CuO, Fe₂O₃ etc.
 - High sulfur capacity (i.e. 392 mg S/g ZnO), compared to adsorbents for liquid phase desulfurization.

Objectives

- To build a desulfurizer able to
 - Reduce total sulfur concentration to less than 3 ppmv
 - Provide a continuous run of 200 hours
 - Have a good low temperature performance for cold startup and transient operations
 - Small bed size: ~1 foot long
 - Low pressure drop ca. 1-2 psi

Cyclic Arrangement and Transition Operation

Reactor/Valve Sizes

Preferred desulfurization temperature: 400 C

Preferred regeneration temperature: 600 C

Parameter	Value	Result
Particle size	0.8~1.4 mm	Regn <5 hour
Reactor diameter	6"	60 cm/s
Bed length	12"	$\Delta P=1.4 \text{ psi}$
Pipe /valve size	2"	6 m/s

Note:

The system works at 400 C during desulfurization and 600 C during regeneration. Therefore the valves are required to work at high temperature in the presence of oxygen during regeneration.

Sulfur input: 300 ppmv

Design Challenges

Reformates:

Flow rate: 17 kg/hr.

Temperature from reformer: 850 C

Reformate Composition:

 Component
 Concentration

 CO
 24.9%

 CO2
 10.2%

 WATER
 6.9%

 H_2 25.0%

 N_2 33.0%

 H_2 S
 300 ppmv

High flow rate: Pressure Drop High Temperature: Need heat

exchanger

High CO and CO₂ concentration,

COS formation.

CO₂+H₂S=COS+H₂O CO+H₂S=COS+H₂

Breakthrough Concentration: 2~3 ppmv Run time: 200 hours Regenerable

Small Reactor <u>Good Low Temperature Performance for Cold</u>

<u>Pressure Drop: < 2 psi</u> <u>Startup and Transient Operations.</u>

Desulfurization Performance COS Equilibrium Analyses

(slow homogeneous reaction) (fast heterogeneous reaction)

reformate composition: 25% CO, 25% H_2 , 10% CO₂, 7% H_2 O and 33% N_2 .

Effects of CO and CO₂

Breakthrough curves of layered beds tested with 300 ppmv $H_2S-25\%$ $H_2-25\%$ CO-10% $CO_2-7\%$ $H_2O-33\%$ N_2 at a face velocity=100 cm/s at 400 C. Bed length: 22 cm

Bed Configuration Layered Bed Design

- Low outlet sulfur concentration (as low as 0.3 ppmv)
- Less weight
- Short regeneration time
- Low temperature function
- Bed Configuration
 - Down flow direction
 - (in desulfurization)
 - Diameter: 2.14 cm
 - Particle size: 0.8~1.4 mm
 - Supported sorbent:
 ZnO/SiO₂ and supported Cu doped ZnO sorbent which has a better low temperature performance.

Commercial ZnO bed (10 cm)

Desulfurization

Supported ZnO sorbent bed (12 cm)

Regeneration

High capacity Long regn. time

High density Poor contacting

low capacity short regn. time low density high contacting efficiency

Layered- Bed Performance

Desulfurization was carried out at 400 C in the presence of reformates containing 300ppmv $H_2S-25\%$ $H_2-25\%$ CO-10% $CO_2-7\%H_2O-33\%$ N_2 at a face velocity of 60 cm/s.

Cyclic Test (Layered Bed of ZnO-ZnO/SiO₂)

Desulfurization was carried out at 400 C in the presence of reformates containing 300 ppmv $H_2S-25\%$ $H_2-25\%$ CO-10% $CO_2-7\%$ $H_2O-33\%$ N_2 .

Reduced Regeneration Time

Sorbent can be regenerated in a shorter time;

Sorbent bed can be stop and resume multiple times during the run.

Sorbent bed can provide a longer service time.

Tested with challenge gas containing 300 ppmv, 30% CO, 32% H_2 , 30% N_2 and 8% H_2 O at a face velocity of 1.0 m/s at 400 C. The sorbent bed contains 56 g of 1.2 mm ZnO particles with a bed length of 10 cm, and ZnO/SiO₂ of 12 cm. Spent sorbent was regenerated in air-steam mixture containing ~14% O₂ for 4 hours.

Low Temperature Performance

Desulfurization was carried out at 150 C in the presence of reformates containing 300 ppmv $H_2S-25\%$ $H_2-25\%$ CO-10% $CO_2-7\%H_2O-33\%$ N_2 .

Off-Site Regenerable Desulfurizer (Sulfur Cartridge)

• Single reactor provides a run time of 200 hours.

Desulfurization was carried out at 400 C in the presence of reformates containing 300ppmv H2S-25% H2- 25% CO-10% CO2-7%H2O-33% N2 at a face velocity of 60 cm/s.

Desulfurizer Construction Sorbent Loaded for Desulfurizer

Conclusion

- The layered bed made of commercial ZnO and supported ZnO based sorbent demonstrated a wide operational temperature window (150~400 C).
- The layered bed are highly regenerable. It can be regenerated for 30 cycle without significant changes in desulfurization performance.
- The designed desulfurizer can provide a continuous run with regeneration or 200 hours run as a sulfur cartridge.

Acknowledgements

Award #: W56HZV-07-C-0577

Thank you for your attention

Questions?